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The following ten pages are a demonstration of the basic concepts that we use in the 

proof of the Collatz conjecture, that is, elementary segments and compound segments. 

This document can be divided into two central points:  

First, we will see an algebraic method that allows us to deduce the elementary segments, 

which are the basic components of the compound segments. The second point concerns 

the assembly of the composite segments and the differentiation of those assemblies that 

are applicable to the conjecture from those that are not. This distinction is necessary 

because if there are composite segments that are obtained by applying the function 𝑔  

two or more times in a row or segments that refute the conjecture through divergences, 

these would not belong to the theoretical framework of the Collatz conjecture. You can 

read this in the document “Proof of the Collatz conjecture using the digital root operator” 

on my website. Anyway, we will see it with some examples in the last pages of this 

document. 

Now let's start by demonstrating the eighteen elementary segments, which are the basic 

components of the composite segments. 

A) Demonstration of the elementary segments. 
Let us first remember that the subsets of 𝐴𝑠 are the following, 

𝐴𝑠 = {𝐴1,  𝐴2,  𝐴3,  𝐴4,  𝐴5,  𝐴6,  𝐴7,  𝐴8,  𝐴9}. 

Each of the nine subsets of 𝐴𝑠 is composed of both even and odd elements. To see this, 

let's look at the elements of the subset 𝐴1 has: 

𝐴1 = {1 + 9 · 𝑛 | 𝑛 ∈ ℕ0} = {1,  10 , 19,  28,   … }. 

(1 odd, 10 even, 19 odd, 28 even, …). 

Let us also see the elements that conform the second subset of 𝐴𝑠: 

𝐴2 = {2 + 9 · 𝑛 | 𝑛 ∈ ℕ0} = {2,  11 , 20,  29,   … }. 

(2 even, 11 odd, 20 even, 29 odd, …). 



1.- Demonstration of elementary segments one and ten: 
Now, if we want to refer to the even elements and the odd elements separately from the 

subset 𝐴1 then we can do it as follows: 

𝐴𝑒𝑣𝑒𝑛𝑠 = {1 + 9 · (2𝑛 + 1) | 𝑛 ∈ ℕ0} = {10,  28,  46,  64,   … }. 

𝐴𝑜𝑑𝑑𝑠 = {1 + 9 · (2𝑛) | 𝑛 ∈ ℕ0} = {1,  19,  37,  55,   … }. 

In this way we can operate algebraically with the respective subsets, and we can easily 

verify that all the elements of the subset 𝐴𝑒𝑣𝑒𝑛𝑠 ⊂ 𝐴1, when divided by two, will give each 

of the elements of 𝐴5: 

𝐴𝑒𝑣𝑒𝑛𝑠

2
=

1+9·(2𝑛+1)

2
= 5 + 9 · 𝑛. 

In a more visual way, although not formally: 

𝐴5 =
{10, 28, 46, 64, … }

2
= {5,  14,  23,  32,   … }. 

On the other hand, if we consider the elements of 𝐴𝑜𝑑𝑑𝑠 ⊂ 𝐴1 and, as the conjecture says, 

we multiply by three and add one to each of the elements of the subset, we will always 

obtain elements of the subset 𝐴4, which will also be even. We can see this clearly in the 

following equation: 

3 · (𝐴𝑜𝑑𝑑𝑠) + 1 = 3 · [1 + 9 · (2𝑛)] + 1 = 4 + 9 · (6𝑛). 

With these operations we can guarantee the following: 

1) When dividing an even number that belongs to 𝐴1 by two, we will always obtain a 

natural number from the subset 𝐴5. 

𝐴1 → 𝐴5 (First elementary segment). 

2) When multiplying by three and adding one to an odd number that belongs to 𝐴1 we 

will always obtain a natural number from the subset 𝐴4. 

𝐴1 ↦ 𝐴4 (Elementary segment number ten). 

2.- Demonstration of elementary segments two and eleven: 
If it has not been clear, in the following I will dedicate myself to demonstrating each of the 

elementary segments, starting with the elements of subset 𝐴2 whose components also 

alternate between even and odd: 

𝐴2 = {2 + 9 · 𝑛 | 𝑛 ∈ ℕ0} = {2,  11,  20,  29,   … }. 

(2 even, 11 odd, 20 even, 29 odd, …). 

If we want to refer to the even elements and the odd elements separately, then we can 

do it as follows: 

𝐴𝑒𝑣𝑒𝑛𝑠 = {2 + 9 · (2𝑛) | 𝑛 ∈ ℕ0} = {2,  20,  38,  56,   … }. 



𝐴𝑜𝑑𝑑𝑠 = {2 + 9 · (2𝑛 + 1) | 𝑛 ∈ ℕ0} = {11,  29,  47,  65,   … }. 

In this way, we can operate algebraically with the respective subsets, and we can easily 

verify that all the elements of the subset 𝐴𝑒𝑣𝑒𝑛𝑠 ⊂ 𝐴2 when divided by two will give each of 

the elements of 𝐴1: 

𝐴𝑒𝑣𝑒𝑛𝑠

2
=

2+9·(2𝑛)

2
= 1 + 9 · 𝑛. 

On the other hand, if we consider the elements of the subset 𝐴𝑜𝑑𝑑𝑠 ⊂ 𝐴2 and, as the 

conjecture says, we multiply by three and add one to each of the elements of the subset, 

we will always obtain elements of the subset 𝐴7, which will also be even. We can see this 

clearly in the following equations: 

3 · (𝐴𝑜𝑑𝑑𝑠) + 1 = 3 · [2 + 9 · (2𝑛 + 1)] + 1 = 7 + 9 · (6𝑛 + 3). 

After these operations, we can guarantee the following: 

1) When dividing an even number that belongs to 𝐴2 we will always obtain a natural 

number that belongs to 𝐴1. 

𝐴2 → 𝐴1 (Second elementary segment). 

2) When multiplying by three and adding one to an odd number that belongs to 𝐴2, 

we will always obtain a natural number that belongs to the subset 𝐴7. 

𝐴2 ↦ 𝐴7 (Elementary segment number eleven), 

 

3.- Demonstration of the elementary segments three and twelve. 
To obtain elemental segment number three and twelve, we will do the same procedure 

that we have applied on the previous pages. 

We start from subset 𝐴3, whose elements alternate between even and odd numbers: 

𝐴3 = {3 + 9 · 𝑛 | 𝑛 ∈ ℕ0} = {3,  12,  21,  30,   … }. 

If we want to refer to the even elements and the odd elements separately, we will do so 

using the following expressions: 

𝐴𝑒𝑣𝑒𝑛𝑠 = {3 + 9 · (2𝑛 + 1) | 𝑛 ∈ ℕ0} = {12,  30,  48,  66,   … }. 

𝐴𝑜𝑑𝑑𝑠 = {3 + 9 · (2𝑛) | 𝑛 ∈ ℕ0} = {3,  21,  39,  57,   … }. 

In this way we can operate algebraically with the respective subsets, and we can easily 

verify that all the elements of the subset 𝐴𝑒𝑣𝑒𝑛𝑠 ⊂ 𝐴3 when divided by two will give each of 

the elements of 𝐴6: 

𝐴𝑒𝑣𝑒𝑛𝑠

2
=

3+9·(2𝑛+1)

2
= 6 + 9 · 𝑛. 



On the other hand, if we consider the elements of the subset 𝐴𝑜𝑑𝑑𝑠 ⊂ 𝐴3 and, as the 

conjecture says, we multiply by three and add one to each of the elements of the subset, 

we will always obtain elements of the subset 𝐴1, which will also be even. We can see this 

clearly in the following expression: 

3 · (𝐴𝑜𝑑𝑑𝑠) + 1 = 3 · [3 + 9 · (2𝑛)] + 1 = 1 + 9 · (6𝑛 + 1). 

After these operations we can guarantee the following statements: 

1) When dividing an even number that belongs to 𝐴3 we will always obtain a natural 

number that belongs to 𝐴6. 

𝐴3 → 𝐴6 (Elementary segment number three). 

2) When multiplying by three and adding one to an odd number that belongs to 𝐴3, 

we will always obtain a natural number that belongs to the subset 𝐴1. 

𝐴3 ↦ 𝐴1 (Elementary segment number twelve). 

 

4.- Demonstration of the elementary segments number four and fifteen. 
We start with subset 𝐴4 observing that it is composed of even elements and odd elements: 

𝐴4 = {4 + 9 · 𝑛 | 𝑛 ∈ ℕ0} = {4,  13,  22,  31,   … }. 

If we want to refer to the even and odd elements separately, we can do so using the 

following expressions: 

𝐴𝑒𝑣𝑒𝑛𝑠 = {4 + 9 · (2𝑛) | 𝑛 ∈ ℕ0} = {4,  22,  40,  58  … }. 

𝐴𝑜𝑑𝑑𝑠 = {4 + 9 · (2𝑛 + 1) | 𝑛 ∈ ℕ0} = {13,  31,  49,  67  … }. 

In this way, we can operate algebraically with the respective subsets, and we can easily 

verify that all the elements of the subset 𝐴𝑒𝑣𝑒𝑛𝑠 ⊂ 𝐴4 when divided by two will give each of 

the elements of 𝐴2: 

𝐴𝑒𝑣𝑒𝑛𝑠

2
=

4+9·(2𝑛)

2
= 2 + 9 · 𝑛. 

On the other hand, if we consider the elements of the subset 𝐴𝑜𝑑𝑑𝑠 ⊂ 𝐴4 and, as the 

conjecture says, we multiply by three and add one to each of the elements of the subset, 

we will always obtain elements of the subset 𝐴4, which will also be even. We can see this 

clearly in the following expression: 

3 · (𝐴𝑜𝑑𝑑𝑠) + 1 = 3 · [4 + 9 · (2𝑛 + 1)] + 1 = 4 + 9 · (6𝑛 + 4). 

After these operations, we can guarantee the following statements: 

1) When dividing an even number that belongs to 𝐴4 we will always obtain a natural 

number that belongs to 𝐴2: 



𝐴4 → 𝐴2 (Elementary segment number four). 

2) When multiplying by three and adding one to an odd number that belongs to 𝐴4, 

we will always obtain a natural number that belongs to the subset 𝐴4: 

𝐴4 ↦ 𝐴4 (Elementary segment number thirteen). 

 

5.- Demonstration of elementary segments five and fourteen: 
We start from subset 𝐴5 observing that it is composed of even elements and odd 

elements: 

𝐴5 = {5 + 9 · 𝑛 | 𝑛 ∈ ℕ0} = {5,  14,  23,  32,   … }. 

If we want to refer to the even and odd elements separately, we can do so using the 

following expressions: 

𝐴𝑒𝑣𝑒𝑛𝑠 = {5 + 9 · (2𝑛 + 1) | 𝑛 ∈ ℕ0} = {14,  32,  50,  68,   … }. 

𝐴𝑜𝑑𝑑𝑠 = {5 + 9 · (2𝑛) | 𝑛 ∈ ℕ0} = {5,  23,  41,  59,   … }. 

In this way we can operate algebraically with the respective subsets, and we can easily 

verify that all the elements of the subset 𝐴5 when divided by two will give each of the 

elements of 𝐴7: 

𝐴𝑒𝑣𝑒𝑛𝑠

2
=

5+9·(2𝑛+1)

2
= 7 + 9 · 𝑛. 

On the other hand, if we consider the elements of the subset 𝐴𝑜𝑑𝑑𝑠 ⊂ 𝐴5 and, as the 

conjecture says, we multiply by three and add one to each of the elements of the subset, 

we will always obtain elements of the subset 𝐴7, which will also be even. We can see this 

clearly in the following expression: 

3 · (𝐴𝑜𝑑𝑑𝑠) + 1 = 3 · [5 + 9 · (2𝑛)] + 1 = 7 + 9 · (6𝑛 + 4). 

After these operations we can guarantee the following statements: 

1) When dividing an even number that belongs to 𝐴5 we will always obtain a natural 

number that belongs to 𝐴7. 

𝐴5 → 𝐴7 (Elementary segment number five). 

2) When multiplying by three and adding one to an odd number that belongs to 𝐴5, 

we will always obtain a natural number that belongs to the subset 𝐴7. 

𝐴5 ↦ 𝐴7 (Elementary segment number fourteen). 

 

6.- Demonstration of the elementary segments number six and fifteen. 
We start from subset A6 observing that it is composed of both even and odd elements: 



𝐴6 = {6 + 9 · 𝑛 | 𝑛 ∈ ℕ0} = {6,  15,  24,  33,   … }. 

If we want to refer to the even and odd elements separately, we can do so using the 

following expressions: 

𝐴𝑒𝑣𝑒𝑛𝑠 = {6 + 9 · (2𝑛) | 𝑛 ∈ ℕ0} = {6,  24,  42,  60,   … }. 

𝐴𝑜𝑑𝑑𝑠 = {6 + 9 · (2𝑛 + 1) | 𝑛 ∈ ℕ0} = {15,  33,  51,  69,   … }. 

In this way, we can operate algebraically with the respective subsets, and we can easily 

verify that all the elements of the subset 𝐴𝑒𝑣𝑒𝑛𝑠 ⊂ 𝐴6 when divided by two will give each of 

the elements of 𝐴3: 

𝐴𝑒𝑣𝑒𝑛𝑠

2
=

6+9·(2𝑛)

2
= 3 + 9 · 𝑛. 

On the other hand, if we consider the elements of the subset 𝐴𝑜𝑑𝑑𝑠 ⊂ 𝐴6 and, as the 

conjecture says, we multiply by three and add one to each of the elements of the subset, 

we will always obtain elements of the subset 𝐴1, which will also be even. We can see this 

clearly in the following expression: 

3 · (𝐴𝑜𝑑𝑑𝑠) + 1 = 3 · [6 + 9 · (2𝑛 + 1)] + 1 = 1 + 9 · (6𝑛 + 5). 

After these operations we can guarantee the following statements: 

1) When dividing an even number that belongs to 𝐴6 we will always obtain a natural 

number that belongs to 𝐴3. 

𝐴6 → 𝐴3 (Elementary segment number six). 

2) When multiplying by three and adding one to an odd number that belongs to 𝐴6, 

we will always obtain a natural number that belongs to the subset 𝐴1. 

𝐴6 ↦ 𝐴1 (Elementary segment number fifteen). 

 

7.- Demonstration of the elementary segments seven and sixteen: 
We start from subset 𝐴7 observing that it is composed of both even and odd elements: 

𝐴7 = {7 + 9 · 𝑛 | 𝑛 ∈ ℕ0} = {7,  16,  25,  34,   … }. 

If we want to refer to the even and odd elements separately, we can do so using the 

following expressions: 

𝐴𝑒𝑣𝑒𝑛𝑠 = {7 + 9 · (2𝑛 + 1) | 𝑛 ∈ ℕ0} = {16,  34,  52,  70,   … }. 

𝐴𝑜𝑑𝑑𝑠 = {7 + 9 · (2𝑛) | 𝑛 ∈ ℕ0} = {7,  25,  43,  61,   … }. 

In this way we can operate algebraically with the respective subsets, and we can easily 

verify that all the elements of the subset 𝐴𝑜𝑑𝑑𝑠 ⊂ 𝐴7 when divided by two will give each of 

the elements of 𝐴8: 



𝐴𝑒𝑣𝑒𝑛𝑠

2
=

7+9·(2𝑛+1)

2
= 8 + 9 · 𝑛. 

On the other hand, if we consider the elements of the subset 𝐴𝑜𝑑𝑑𝑠 ⊂ 𝐴7 and, as the 

conjecture says, we multiply by three and add one to each of the elements of the subset, 

we will always obtain elements of the subset 𝐴4, which will also be pairs. We can see this 

clearly in the following expression: 

3 · (𝐴𝑜𝑑𝑑𝑠) + 1 = 3 ·  [7 + 9 · (2𝑛)] + 1 = 4 + 9 · (6𝑛 + 2). 

After these operations we can guarantee the following statements: 

1) When dividing an even number that belongs to 𝐴7 we will always obtain a natural 

number that belongs to 𝐴8. 

𝐴7 → 𝐴8 (Elementary segment number seven). 

2) When multiplying by three and adding one to an odd number that belongs to 𝐴7 we 

will always obtain a natural number that belongs to the subset 𝐴4. 

𝐴7 ↦ 𝐴4 (Elementary segment number sixteen). 

 

8.- Demonstration of the elementary segments eight and seventeen: 
We start from subset 𝐴8 observing that it is composed of both even and odd elements: 

𝐴8 = {8 + 9 · 𝑛 | 𝑛 ∈ ℕ0} = {8,  17,  26,  35,   … }. 

If we want to refer to the even and odd elements separately, we can do so using the 

following expressions: 

𝐴𝑒𝑣𝑒𝑛𝑠 = {8 + 9 · (2𝑛) | 𝑛 ∈ ℕ0} = {8,  26,  44,  62  … }. 

𝐴𝑜𝑑𝑑𝑠 = {8 + 9 · (2𝑛 + 1) | 𝑛 ∈ ℕ0} = {17,  35,  53,  71  … }. 

In this way we can operate algebraically with the respective subsets, and we can easily 

verify that all the elements of the subset 𝐴𝑒𝑣𝑒𝑛𝑠 ⊂ 𝐴8 when divided by two will give each of 

the elements of 𝐴4: 

𝐴𝑒𝑣𝑒𝑛𝑠

2
=

8+9·(2𝑛)

2
= 4 + 9 · 𝑛. 

On the other hand, if we consider the elements of the subset 𝐴𝑜𝑑𝑑𝑠 ⊂ 𝐴8 and, as the 

conjecture says, we multiply by three and add one to each of the elements of the subset, 

we will always obtain elements of the subset 𝐴7, which will also be even. We can see this 

clearly in the following expression: 

3 · (𝐴𝑜𝑑𝑑𝑠) + 1 = 3 · [8 + 9 · (2𝑛 + 1)] + 1 = 7 + 9 · (6𝑛 + 5). 

After these operations we can guarantee the following statements: 



1) When dividing an even number that belongs to 𝐴8 we will always obtain a natural 

number that belongs to 𝐴4. 

𝐴8 → 𝐴4 (Elementary segment number eight).  

2) When multiplying by three and adding one to an odd number that belongs to 𝐴8, 

we will always obtain a natural number that belongs to the subset 𝐴7. 

𝐴8 ↦ 𝐴7 (Elementary segment number seventeen). 

 

9.- Demonstration of the elementary segments nine and eighteen: 
We start from subset 𝐴9 observing that it is composed of both even and odd elements: 

𝐴9 = {9 + 9 · 𝑛 | 𝑛 ∈ ℕ0} = {9,  18,  27,  36,   … }. 

If we want to refer to the even and odd elements separately, we can do so using the 

following expressions: 

𝐴𝑒𝑣𝑒𝑛𝑠 = {9 + 9 · (2𝑛 + 1) | 𝑛 ∈ ℕ0} = {18,  36,  54,  72,   … }. 

𝐴𝑜𝑑𝑑𝑠 = {9 + 9 · (2𝑛) | 𝑛 ∈ ℕ0} = {9,  27,  45,  63  … }. 

In this way we can operate algebraically with the respective subsets, and we can easily 

verify that all the elements of the subset 𝐴𝑒𝑣𝑒𝑛𝑠 ⊂ 𝐴9 when divided by two will give each of 

the elements of 𝐴9: 

𝐴𝑒𝑣𝑒𝑛𝑠

2
=

9+9·(2𝑛+1)

2
= 9 + 9 · 𝑛. 

On the other hand, if we consider the elements of the subset 𝐴𝑜𝑑𝑑𝑠 ⊂ 𝐴9 and, as the 

conjecture says, we multiply by three and add one to each of the elements of the subset, 

we will always obtain elements of the subset 𝐴1, which will also be even. We can see this 

clearly in the following expression: 

3 · (𝐴𝑜𝑑𝑑𝑠) + 1 = 3 · [9 + 9 · (2𝑛)] + 1 = 1 + 9 · (6𝑛 + 3). 

After these operations we can guarantee the following statements: 

1) When dividing an even number that belongs to 𝐴9 we will always obtain a natural 

number that belongs to the same set, 𝐴9. 

𝐴9 → 𝐴9 (Elementary segment number nine). 

2) When multiplying by three and adding one to an odd number that belongs to 𝐴9, 

we will always obtain a natural number that belongs to the subset 𝐴1. 

𝐴9 ↦ 𝐴1 (Elementary segment number eighteen). 

 



B) Combination of elementary segments. 
 

When combining elementary segments in order to obtain the so-called composite 

segments, we must take the following into account:  

(a) We can only combine two elemental segments if the first component of one of them 

coincides with the second component of the other elemental segment.  

(b) After multiplying by three and adding one to any number, the next operation 

applied is always dividing by two.  

As an example, we will see how to construct the following two composite segments from 

the elementary segments, and we will see which of them is applicable to the conjecture 

and which is not: 

𝜂 :  𝐴7 → 𝐴8 → 𝐴4 ↦ 𝐴4 → 𝐴2. 

𝜇 :  𝐴4 → 𝐴2 → 𝐴1 ↦ 𝐴4 ↦ 𝐴4. 

The composite segment 𝜂  is created from the following elementary segments, 

𝐴7 → 𝐴8 ;  𝐴8 → 𝐴4 ;  𝐴4 ↦ 𝐴4 ;  𝐴4 → 𝐴2. 

and it is applicable to the conjecture because it considers sentences (a) and (b). 

On the other hand, the composite segment 𝜇  is created from the following elementary 

segments, 

𝐴4 → 𝐴2 ;  𝐴2 → 𝐴1 ;  𝐴1 ↦ 𝐴4 ;  𝐴4 ↦ 𝐴4. 

However, it is not applicable to the conjecture since, even that satisfies sentence (a), does 

not satisfy sentence (b). This is so because, when going from 𝐴1 ↦ 𝐴4 we have multiplied 

by three and added one, and then we have combined it with the segment 𝐴4 ↦ 𝐴4, which 

is also obtained by multiplying by three and adding one. Therefore, the composite 

segment 𝜇  is not applicable to the conjecture since in no composite segment two 

multiplications can occur in a row (or the same thing, applying the function 𝑔  twice in a 

row). 

 

 

 

 

 

 

 



 

Brief Summary: 
 

From the elementary segments, we can obtain all the existing composite segments. As 

we have seen, not all compound segments are segments that hold within the theoretical 

framework of the Collatz conjecture.  

Composite segments can be classified according to whether they are applicable to the 

conjecture or not: 

 

Applicable to the conjecture: Not applicable to the conjecture: 

Numerical flows of all natural numbers 
not including zero. 

Divergences. 
Impossible segments (break at least one 
of the two conditions set out on the 
previous page). 
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